首页> 外文OA文献 >Identification of Antifreeze Proteins and Their Functional Residues by Support Vector Machine and Genetic Algorithms based on n-Peptide Compositions
【2h】

Identification of Antifreeze Proteins and Their Functional Residues by Support Vector Machine and Genetic Algorithms based on n-Peptide Compositions

机译:基于n肽组成的支持向量机和遗传算法识别抗冻蛋白及其功能残基

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the first time, multiple sets of n-peptide compositions from antifreeze protein (AFP) sequences of various cold-adapted fish and insects were analyzed using support vector machine and genetic algorithms. The identification of AFPs is difficult because they exist as evolutionarily divergent types, and because their sequences and structures are present in limited numbers in currently available databases. Our results reveal that it is feasible to identify the shared sequential features among the various structural types of AFPs. Moreover, we were able to identify residues involved in ice binding without requiring knowledge of the three-dimensional structures of these AFPs. This approach should be useful for genomic and proteomic studies involving cold-adapted organisms.
机译:首次使用支持向量机和遗传算法分析了来自各种冷适应鱼类和昆虫的抗冻蛋白(AFP)序列的多组正肽组成。 AFP的识别很困难,因为它们以进化上不同的形式存在,并且由于其序列和结构在当前可用的数据库中数量有限。我们的结果表明,在AFP的各种结构类型之间识别共享的顺序特征是可行的。此外,我们能够识别参与冰绑定的残基,而无需了解这些AFP的三维结构。这种方法对于涉及冷适应生物的基因组和蛋白质组学研究应该是有用的。

著录项

  • 作者

    Yu, Chin-Sheng; Lu, Chih-Hao;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号